Optical aberrations in the mouse eye
نویسندگان
چکیده
PURPOSE The mouse eye is a widely used model for retinal disease and has potential to become a model for myopia. Studies of retinal disease will benefit from imaging the fundus in vivo. Experimental models of myopia often rely on manipulation of the visual experience. In both cases, knowledge of the optical quality of the eye, and in particular, the retinal image quality degradation imposed by the ocular aberrations is essential. In this study, we measured the ocular aberrations in the wild type mouse. METHODS Twelve eyes from six four-week old black C57BL/6 wild type mice were studied. Measurements were done on awake animals, one being also measured under anesthesia for comparative purposes. Ocular aberrations were measured using a custom-built Hartmann-Shack system (using 680-nm illumination). Wave aberrations are reported up to fourth order Zernike polynomials. Spherical equivalent and astigmatism were obtained from the 2nd order Zernike terms. Modulation Transfer Functions (MTF) were estimated for the best focus, and through-focus, to estimate depth-of-focus. All reported data were for 1.5-mm pupils. RESULTS Hartmann-Shack refractions were consistently hyperopic (10.12+/-1.41 D, mean and standard deviation) and astigmatism was present in many of the eyes (3.64+/-3.70 D, on average). Spherical aberration was positive in all eyes (0.15+/-0.07 microm) and coma terms RMS were significantly high compared to other Zernike terms (0.10+/-0.03 microm). MTFs estimated from wave aberrations show a modulation of 0.4 at 2c/deg, for best focus (and 0.15 without cancelling the measured defocus). For that spatial frequency, depth-of-focus estimated from through-focus modulation data using the Rayleigh criterion was 6D. Aberrations in the eye of one anesthetized mouse were higher than in the same eye of the awake animal. CONCLUSIONS Hyperopic refractions in the mouse eye are consistent with previous retinoscopic data. The optics of the mouse eye is far from being diffraction-limited at 1.5-mm pupil, with significant amounts of spherical aberration and coma. However, estimates of MTFs from wave aberrations are higher than previously reported using a double-pass technique, resulting in smaller depth-of-field predictions. Despite the large degradation imposed by the aberrations these are lower than the amount of aberrations typically corrected by available correction techniques (i.e., adaptive optics). On the other hand, aberrations do not seem to be the limiting factor in the mouse spatial resolution. While the mouse optics are much more degraded than in other experimental models of myopia, its tolerance to large amounts of defocus does not seem to be determined entirely by the ocular aberrations.
منابع مشابه
Optical properties of the mouse eye
The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice ar...
متن کاملLabel free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye.
Measuring blood cell dynamics within the capillaries of the living eye provides crucial information regarding the health of the microvascular network. To date, the study of single blood cell movement in this network has been obscured by optical aberrations, hindered by weak optical contrast, and often required injection of exogenous fluorescent dyes to perform measurements. Here we present a ne...
متن کاملAdaptive optics optical coherence tomography for in vivo mouse retinal imaging.
Small animal models of retinal diseases are important to vision research, and noninvasive high resolution in vivo rodent retinal imaging is becoming an increasingly important tool used in this field. We present a custom Fourier domain optical coherence tomography (FD-OCT) instrument for high resolution imaging of mouse retina. In order to overcome aberrations in the mouse eye, we incorporated a...
متن کاملکاربرد لنزهای داخل چشمی در جراحی کاتاراکت و عوامل تأثیرگذار بر دید بیمار
Introduction: With the growing and rapid development of refractive surgery, researches focus increasingly on improvement of visual quality after cataract surgery. Intraocular lenses (IOLs) were a successful effort in the field of cataract surgery. Despite significant advances in cataract surgery, several complications related to surgical technique and IOL design after surgery can cause vision c...
متن کاملThe influence of optical aberrations in refractive surgery.
Optical aberrations lead to defects in image-forming, the image obtained being imperfect and thereby decreasing the quality of vision. When an optic system is not perfect, as happens with the eye, the rays of light that pass through the system produce optical aberrations. The purpose of this review is to describe optical aberrations and their impact on vision and how refractive surgery outcomes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 46 شماره
صفحات -
تاریخ انتشار 2006